Abstract
In the presence of uncertainty of asset returns, choosing an appropriate risk measure and determining the optimal weights of assets in a portfolio remain formidable and challenging problems. In this paper, we propose and study a mean-conditional value at risk-skewness portfolio optimization model based on the asymmetric Laplace distribution, which is suitable for describing the leptokurtosis, fat-tail, and skewness characteristics of financial assets. In addition, skewness is added into the portfolio optimization model to meet the diverse needs of investors. To solve this multi-objective problem, we suggest a simplified model with exactly the same solution. This modified model greatly reduces the complexity of the problem. Therefore, the mean-conditional value at risk-skewness model can be correspondingly solved. In order to illustrate the method, we provide an application concerning the portfolio allocation of 19 constituent stocks of S&P 500 index using our model. We show that this model could make important contributions to research on investment decision making.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.