Abstract
Results of quantum chemical investigations shed new light on the mechanisms of formation of the stemarene, stemodene, betaerdene, aphidicolene, and scopadulanol diterpenes from syn-copalyl diphosphate ( syn-CPP). These terpenes are shown to be connected by a complex network of reaction pathways involving concerted but asynchronous dyotropic rearrangements and triple shift rearrangements. The interconnection of these pathways leads to multiple routes for formation of each diterpene, which could lead to different origins for some carbon atoms in a given diterpenes under different conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.