Abstract

The success of MaxSAT (maximum satisfiability) solving in recent years has motivated researchers to apply MaxSAT solvers in diverse discrete combinatorial optimization problems. Group testing has been studied as a combinatorial optimization problem, where the goal is to find defective items among a set of items by performing sets of tests on items. In this paper, we propose a MaxSAT-based framework, called MGT, that solves group testing, in particular, the decoding phase of non-adaptive group testing. We extend this approach to the noisy variant of group testing, and propose a compact MaxSAT-based encoding that guarantees an optimal solution. Our extensive experimental results show that MGT can solve group testing instances of 10000 items with 3% defectivity, which no prior work can handle to the best of our knowledge. Furthermore, MGT has better accuracy than the LP-based approach. We also discover an interesting phase transition behavior in the runtime, which reveals the easy-hard-easy nature of group testing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.