Abstract

AbstractA given group of protein sequences of different lengths is considered as resulting from random transformations of independent random ancestor sequences of the same preset smaller length, each produced in accordance with an unknown common probabilistic profile. We describe the process of transformation by a Hidden Markov Model (HMM) which is a direct generalization of the PAM model for amino acids. We formulate the problem of finding the maximum likelihood probabilistic ancestor profile and demonstrate its practicality. The proposed method of solving this problem allows for obtaining simultaneously the ancestor profile and the posterior distribution of its HMM, which permits efficient determination of the most probable multiple alignment of all the sequences. Results obtained on the BAliBASE 3.0 protein alignment benchmark indicate that the proposed method is generally more accurate than popular methods of multiple alignment such as CLUSTALW, DIALIGN and ProbAlign.KeywordsMultiple alignment problemprotein sequences analysisEM-algorithmHMMcommon ancestor

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.