Abstract
This paper focuses on consensus reaching process (CRP) under social network in which the trust relationship expressed by linguistic information. A new feedback mechanism in social network group decision making (SN-GDM) is proposed, which mainly consists of the following two aspects: (1) The propagation of distributed linguistic trust is investigated to study trust relation among experts; (2) A maximum self-esteem degree based feedback mechanism is developed to produce personalized advice for reaching higher group consensus. To do so, a novel linguistic trust propagation method is proposed to obtain the complete trust relationship among group. The self-esteem degree is used to define the extent that an individual makes concessions. Then, a maximum self-esteem degree based optimal feedback mechanism is built to produce personalized advice to help inconsistent experts make change of their opinion. Its novelty lies in the establishment of an optimization model with the nonlinear group self-esteem degree function as the objective function while group consensus threshold as the restrictions. Therefore, the inconsistent experts will reach a group consensus with the minimum loss of self-esteem degree, and then, it achieves the optimal balance between individual self-esteem and group consensus. Finally, a ranking process is applied to derive the appropriate consensus solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.