Abstract

We consider a continuous-time bilinear control system (BCS) with Metzler matrices. Each entry in the transition matrix of such a system is nonnegative, making the positive orthant an invariant set of the dynamics. Motivated by the stability analysis of positive linear switched systems (PLSSs), we define a control as optimal if, for a fixed final time, it maximizes the spectral radius of the transition matrix. Our main result is a first-order necessary condition for optimality in the form of a maximum principle (MP). The proof of this MP combines the standard needle variation with a basic result from the Perron--Frobenius theory of nonnegative matrices. We describe several applications of this MP to the stability analysis of PLSSs under arbitrary switching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.