Abstract

This paper addresses an important issue in a self-paced brain–computer interface (BCI): constructing subject-specific continuous control signal. To this end, we propose an alternative to the conventional regression/classification-based mechanism for building the transformation from EEG features into a univariate control signal. Based on information theory, the mechanism formulates the optimum transformation as maximizing the mutual information between the control signal and the mental state. We introduce a non-parametric mutual information estimate for general output distribution, and then develop a gradient-based algorithm to optimize the transformation using training data. We conduct an offline simulation study using motor imagery data from the BCI Competition IV Data Set I. The results show that the learning algorithm converged quickly, and the proposed method yielded significantly higher BCI performance than the conventional mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.