Abstract

In this paper, a maximum likelihood (ML) method is presented for joint estimation of amplitude, phase, time delay, and data symbols in a single-user direct-sequence spread-spectrum communication system. Since maximization of the likelihood function is analytically intractable, a novel coordinate ascent algorithm is used to obtain sequential updates of the data symbols and all unknown nuisance parameters. The novelty of the algorithm is due to the use of a multiresolution expansion of the received signal and the use of polynomial rooting in the complex plane in place of a line search over the signal delay parameter. The multiresolution structure of the algorithm is exploited to reduce sensitivity to impulsive noise via wavelet thresholding. Computer simulations of the single-user system show that the algorithm has fast convergence, and comparison with theoretical lower bounds establishes that the algorithm achieves nearly optimal error performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.