Abstract

Using a spatial multiplexing transmission scheme can improve the data rate in multiple-input–multiple-output (MIMO) relaying systems, while making signal detection more difficult at receivers. Aiming at lowering the computational complexity of the receiver, this paper proposes a maximum likelihood combining (MLC) algorithm for spatial multiplexing MIMO amplify-and-forward (AF) relaying systems in a Rayleigh flat-fading environment, which is implemented before maximum likelihood (ML) detection. The combining signal and equivalent channel are opportunely designed based on the ML rule in the MLC algorithm. We also formulate the diversity gain of the systems that employ the MLC algorithm mathematically, induced by the Chernoff bound of pairwise error probability (PEP). An upper bound on the symbol error probability (SEP) for the MLC algorithm with multiple modulations is also given, based on the derived bound of PEP. Moreover, the complexities of ML receivers adopting the MLC algorithm and the conventional vector combining (VC) algorithm are analyzed. Numerical simulations indicate that systems with the MLC algorithm achieve the same performance while consuming lower computational complexity compared to that with the VC algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.