Abstract
Both image registration and fusion can be formulated as estimation problems. Instead of estimating the registration parameters and the true scene separately as in the conventional way, we propose a maximum likelihood approach for joint image registration and fusion in this paper. More precisely, the fusion performance is used as the criteria to evaluate the registration accuracy. Hence, the registration parameters can be automatically tuned so that both fusion and registration can be optimized simultaneously. The expectation maximization algorithm is employed to solve this joint optimization problem. The Cramer-Rao bound (CRB) is then derived. Our experiments use several types of sensory images for performance evaluation, such as visual images, IR thermal images, and hyperspectral images. It is shown that the mean square error of estimating the registration parameters using the proposed method is close to the CRBs. At the mean time, an improved fusion performance can be achieved in terms of the edge preservation measure Q(AB/F), compared to the Laplacian pyramid fusion approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.