Abstract
We present a maximum entropy approach to analyze the state space of a small system in contact with a large bath, e.g., a solvated macromolecular system. For the solute, the fluctuations around the mean values of observables are not negligible and the probability distribution P(r) of the state space depends on the intricate details of the interaction of the solute with the solvent. Here, we employ a superstatistical approach: P(r) is expressed as a marginal distribution summed over the variation in β, the inverse temperature of the solute. The joint distribution P(β, r) is estimated by maximizing its entropy. We also calculate the first order system-size corrections to the canonical ensemble description of the state space. We test the development on a simple harmonic oscillator interacting with two baths with very different chemical identities, viz., (a) Lennard-Jones particles and (b) water molecules. In both cases, our method captures the state space of the oscillator sufficiently well. Future directions and connections with traditional statistical mechanics are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.