Abstract

The principle of maximum entropy is used under two different sets of mean value constraints to analyse a stableG/G/1 queue withR priority classes under preemptive-resume (PR) and non-preemptive head-of-line (HOL) scheduling disciplines. New one-step recursions for the maximum entropy state probabilities are established and closed form approximations for the marginal queue length distribution per priority class are derived. To expedite the utility of the maximum entropy solutions exact analysis, based on the generalised exponential (GE) distribution, is used to approximate the marginal mean queue length and idle state probability class constraints for both the PR and HOLG/G/1 priority queues. Moreover, these results are used as building blocks in order to provide new approximate formulae for the mean and coefficient of variation of the effective priority service-time and suggest a maximum entropy algorithm for general open queueing networks with priorities in the context of the reduced occupancy approximation (ROA) method. Numerical examples illustrate the accuracy of the proposed maximum entropy approximations in relation to simulations involving different interarrival-time and service-time distributions per class. Comments on the extension of the work to more complex types of queueing systems are included.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.