Abstract

An estimation method is presented that combines the use of recursive least squares, a matrix parameterized model, Gershgorin circles and tridiagonal matrices properties to allow the identification of stable shear building models in the presence of low excitation or low damping. The resultant scheme yields a significant reduction on the number of calculations involved, when compared with the standard vector parameterization based schemes. As real buildings are always open loop stable, the use of an stable shear building model for vibration control purposes allows the design of more robust control laws. Extensive simulation results are presented for cases of low excitation comparing the results of using or not this matrix projection method with different sets of initial conditions. Results indicate that the use of this projection method does not have an influence in the recovery of natural frequencies, however, it significantly improves the recovery of mode shapes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.