Abstract
We present an elimination theory-based method for solving equality-constrained multivariable polynomial least-squares problems in system identification. While most algorithms in elimination theory rely upon Groebner bases and symbolic multivariable polynomial division algorithms, we present an algorithm which is based on computing the nullspace of a large sparse matrix and the zeros of a scalar, univariate polynomial.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.