Abstract

We develop and analyze a trust-region sequential quadratic programming (SQP) method for the solution of smooth equality constrained optimization problems, which allows the inexact and hence iterative solution of linear systems. Iterative solution of linear systems is important in large-scale applications, such as optimization problems with partial differential equation constraints, where direct solves are either too expensive or not applicable. Our trust-region SQP algorithm is based on a composite-step approach that decouples the step into a quasi-normal and a tangential step. The algorithm includes critical modifications of substep computations needed to cope with the inexact solution of linear systems. The global convergence of our algorithm is guaranteed under rather general conditions on the substeps. We propose algorithms to compute the substeps and prove that these algorithms satisfy global convergence conditions. All components of the resulting algorithm are specified in such a way that they can b...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.