Abstract
We propose a procedure for building symmetric positive definite band preconditioners for large-scale symmetric, possibly indefinite, linear systems, when the coefficient matrix is not explicitly available, but matrix–vector products involving it can be computed. We focus on linear systems arising in Newton-type iterations within matrix-free versions of projected methods for bound-constrained nonlinear optimization. In this case, the structure and the size of the matrix may significantly change in subsequent iterations, and preconditioner updating algorithms that exploit information from previous steps cannot be easily applied. Our procedure is based on a recursive approach that incrementally improves the quality of the preconditioner, while requiring a modest number of matrix–vector products. A strategy for dynamically choosing the bandwidth of the preconditioners is also presented. Numerical results are provided, showing the performance of our preconditioning technique within a trust-region Newton method for bound-constrained optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.