Abstract
We address the problem of encoding a graph of order $$\mathsf {n}$$ into a graph of order $$\mathsf {k}<\mathsf {n}$$ in a way to minimize reconstruction error. This encoding is characterized in terms of a particular factorization of the adjacency matrix of the original graph. The factorization is determined as the solution of a discrete optimization problem, which is for convenience relaxed into a continuous, but equivalent, one. Our formulation does not require to have the full graph, but it can factorize the graph also in the presence of partial information. We propose a multiplicative update rule for the optimization task resembling the ones introduced for nonnegative matrix factorization, and convergence properties are proven. Experiments are conducted to assess the effectiveness of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Machine Learning and Cybernetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.