Abstract

Raloxifene hydrochloride (RH) suffers from low oral bioavailability due to its low water-solubility and first-pass metabolism. Therefore, a novel phospholipid complex of RH (RHPC) and a matrix dispersion based on phospholipid complex (RHPC-MD) were successfully prepared and optimized. Several methods were used to validate the formation of RHPC and RHPC-MD, such as differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, infrared spectroscopy, particle size, and zeta potential, meanwhile, their octanol–water partition coefficient, solubility, and dissolution in vitro were also evaluated. To investigate the absorption mechanism of RHPC in vivo, the RHPC was administered to the chylomicron flow blockage rat model. Interestingly, as we expected, a significant reduction in RHPC absorption (67%) (**p< .01) in presence of cycloheximide (CXI) inhibitor was observed, thus confirming the RHPC could be absorbed by lymphatic transport in vivo. Pharmacokinetic studies revealed that the relative oral bioavailability of RHPC as well as RHPC-MD was 223% and 329%, respectively, when comparing with the commercial RH tablets. These outcomes suggested that the current study provided an attractive formulation to enhance the oral bioavailability of RH and stimulated to further research the absorption mechanism of RHPC in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.