Abstract

A matrix detector consisting of small calorimeters based on УПВ-1 pyrolytic carbon is described. The detector allows measurements of the spatial distribution of the energy flux of a high-power hydrogen ion beam to be taken over its cross section. Each calorimeter occupies an area of 4 cm2, and the area of its working body is 0.25 cm2. An unambiguous relation between the heat flux value, the irradiation time, and the calorimeter temperature is established by calculations. The calorimeter measurement error was estimated at ∼4%, and the spread of the sensitivity coefficients between the calorimeters was 5–6% (1σ). The detector was used to measure the distribution of the energy flux of hydrogen ions over the cross section of the “scanned” beam 10 cm in diameter from a high-current accelerator of the НГ-12И facility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call