Abstract

Diffusion-tensor MRI fiber tractography has been used to reconstruct skeletal muscle architecture, but remains a specialized technique using custom-written data processing routines. In this work, we describe the public release of a software toolbox having the following design objectives: accomplish the pre-processing tasks of file input, image registration, denoising, and diffusion-tensor calculation; allow muscle-specific methods for defining seed points; make fiber-tract architectural measurements referenced to tendinous structures; visualize fiber tracts and other muscle structures of interest; analyze the goodness of outcomes; and provide a programming structure that allows the addition of new capabilities in future versions. The proper function of the code was verified using simulated datasets. The toolbox capabilities for characterizing human muscle structure in vivo were demonstrated in a case study. These capabilities included measurements of muscle morphology; contractile and non-contractile tissue volumes; fiber-tract length, pennation angle, curvature; and the physiological cross-sectional area,. The free public release of this software is a first step in creating of a community of users who use these tools in studies of muscle physiology and biomechanics. Users may further contribute to code development. Along with simulated and actual datasets for benchmarking, these tools will further create mechanisms for enhancing scientific rigor and developing and validating new code features. Planned future developments include additional options for image pre-processing, development of a graphical user interface, analysis of architectural patterns during muscle contraction, and integration of functional imaging data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.