Abstract

One of the strategies used to optimize production processes is to define the best layout. For this, the relative positioning of the various equipment, areas, or functional activities inside the company is studied. Proper arrangement of facilities will result in shorter process times and higher productivity. In general, the objective function of the facility layout problem (FLP) is to reduce the total material handling cost. Although over six decades have been passed since the first work on FLP modeling was published, research on many aspects of this problem is still in an early stage and needs to be further explored, which motivated this study. In this paper, the unequal area of rectangular blocks with fixed dimensions and input/output points are considered for FLPs. Four new mixed-integer programming (MIP) models based on previous research formulations are developed. Then, a mathematical optimization approach based on the linearization of the models is applied. An algorithm that solves the linearized MIP model by CPLEX setting a time limit for the solution obtained excellent results for different test problems when compared to those reported in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.