Abstract

In this paper a mathematical model that investigates how vaccination affects the dynamics of COVID-19 was considered. More particularly the model takes into account the waning rate of immunity after vaccination as well as administration of booster vaccine. Posititivity and boundedness of solutions of the model were proved. The disease free equilibrium of the model was determined and by using the next generation matrix method both the basic and effective reproduction numbers of the model were determined. Further, from the effective reproduction number, the minimum critical value of individuals to be vaccinated for containment of the diseases was determined. It was found that the value is less for a perfect vaccine compared to an imperfect vaccine. Numerical simulation of the model was done to determine how the parameters of interest in the study (waning rate of immunity, vaccination rate, administration of booster vaccine and efficacy of the vaccine) affect the effective reproduction number. The results show that increasing the rates of vaccination, administering booster vaccine will decrease the effective reproduction number while an increase in waning rate of immunity increases the effective reproduction number. The disease persist in the population due to the declining of immunity after vaccination which increases the effective reproduction number.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.