Abstract

“Mayer waves” are long-period (6 to 12 seconds) oscillations in arterial blood pressure, which have been observed and studied for more than 100 years in the cardiovascular system of humans and other mammals. A mathematical model of the human cardiovascular system is presented, incorporating parameters relevant to the onset of Mayer waves. The model is analyzed using methods of Lyapunov stability and Hopf bifurcation theory. The analysis shows that increase in the gain of the baroreflex feedback loop controlling venous volume may lead to the onset of oscillations, while changes in the other parameters considered do not affect stability of the equilibrium state. The results agree with observations of Mayer waves in human subjects, both in the period of the oscillations and in the observed age-dependence of Mayer waves. This leads to a proposed explanation of their occurrence, namely that Mayer waves are a “gain-induced instability”. African Journal of Educational Studies in Mathematics and Sciences Vol. 4 2006: pp. 77-91

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.