Abstract
Brucellosis is one of the most serious diseases that wreaks havoc on the production of livestock. Despite various efforts made to curb the spread of brucellosis, the disease remains a major health concern to both humans and animals. In this work, a deterministic model is developed to investigate the transmission dynamics and control of bovine brucellosis in a herd of cattle. The disease-free equilibrium point of the model is shown to be locally asymptotically stable whenever basic reproduction number R 0 ≤ 1 and unstable if R 0 > 1 . Also, the endemic equilibrium point of the model is shown to be locally asymptotically stable whenever R 0 > 1 and unstable otherwise. Numerical simulations of the model suggest that vaccination is the most efficient single control intervention. Also, the most efficient pair of control interventions is vaccination and culling of seropositive cattle. However, the best way to control bovine brucellosis in cattle is the combination of the three control interventions (vaccination, culling of seropositive cattle, and observation of comprehensive biosecurity protocols).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.