Abstract

In this paper, we make an attempt to construct a mathematical description of the physiological processes in presynaptic endings in semicircular canal hair cells of the vestibular system. The receptor potential of the hair cell is the model input. The intensity of the neurotransmitter entering into the synaptic cleft is the model output. The newest investigations established that signal processing which introduces slow adaptation in the afferent responses, must be interposed between the hair cell voltage and the afferent discharge. Afferent spike generation in the semicircular canals, however, results in relatively tonic spike trains in response to steps of current injection and is not likely to introduce the type of adaptation reported here. This leads to the hypothesis that the primary site for adaptation in the vestibular afferents is the synaptic transference between hair cell and afferent. As a case in point, we studied the adaptation of the neurotransmitter in response to the receptor potencial steps. Adequateness of the modeling results and the experimental data may be achieved by combined use of the dynamic and morphological experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.