Abstract

AbstractA mathematical model of biomass gasification in a fluidized bed has been developed. It considers axial variations of concentrations and temperature in the bubble and emulsion phases. The mass balance involves instantaneous oxidation and equilibrium devolatilization of the biomass, kinetics of solid‐gas gasification reactions as well as of gaseous phase reactions and interphase mass transfer and gas convection. The energy balance is solved locally for each vertical volume element, and globally on the reactor by iteration on the temperature at the bottom of the bed. Three parameters have been adjusted based on the experimental results: the heat transfer coefficient at the wall, the weighting of the kinetics of the water‐gas shift reaction and the fraction of biomass carbon remaining as char after devolatilization. The model is used to simulate a pilot scale (50 kg/h) biomass gasifier, and its predictions compared to experimental measurements. The temperature and gaseous concentrations are estimated with good accuracy for the experiments using a wood feedstock, except for the concentration of hydrogen which is overestimated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call