Abstract
We develop a model for the interaction of a fluid flowing above an otherwise static particle bed, with generally the particles being entrained or detrained into the fluid from the upper surface of the particle bed, and thereby forming a fully two phase fluidized cloud above the particle bed. The flow in this large-scale fluidized region is treated as a two-phase flow, whilst the key processes of entrainment and detrainment from the particle bed are treated by examining the local dynamical force balances on the particles in a thin transition layer at the interface between the fully fluidized region and the static particle bed. This detailed consideration leads to the formation of an additional macroscopic boundary condition at this interface, which closes the two-phase flow problem in the bulk fluidized region above. We then introduce an elementary model of the well-known helicopter brownout problem, and use the theory developed in the first part of the paper to fully analyse this model, both analytically and numerically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.