Abstract
A quaternary viscoelastic structure model with two characteristic times is presented to describe the viscoelastic properties of parallel-fibered collagen tissue. The comparison results of model prediction and experimental data of rabbit medial collateral ligaments show that the model could accurately describe viscoelastic behavior such as stress-relaxation, strain-strengthening and creep of bio-soft-tissue within a small scope of errors. To study the biomechanical mechanism of viscoelasticity that biological soft tissue shows, the influence of model parameters on viscoelastic behavior of bio-soft-tissue is analyzed and researched, which indicated that the major influential elements of stress-relaxation in bio-soft-tissue are elastic modulus, relaxation time and strain rate of proteoglycan-rich matrix. The influence of elastic modulus of collagen fibers on stress-relaxation is not significant. However, the nonlinearity of stress-strain curve and viscoelastic behavior of bio-soft-tissue mostly depends on recruitment and reorientation of collagen fibers under external loading.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.