Abstract

This paper presents a mathematical model to investigate type II profile of suspension concentration distribution (i.e., the concentration profile where the maximum concentration appears at some distance above the bed surface) in a steady, uniform turbulent flow through open-channels. Starting from the mass and momentum conservation equations of two-phase flow, a theoretical model has been derived. The distribution equation is derived considering the effects of fluid lift force, drag force, particle inertia, particle–particle interactions, particle velocity fluctuations and drift diffusion. The equation is solved numerically and is compared with available experimental data as well as with other models existing in the literature. Good agreement between the observed value and computed result, and minimum error in comparison to other models indicate that the present model can be applied in predicting particle concentration distribution for type II profile for a wide range of flow conditions. The proposed model is also able to show the transition from type I profile to type II profile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call