Abstract

In this paper we present a mathematical model and a numerical workflow for the simulation of a thermal single-phase flow with reactive transport in porous media, in the presence of fractures. The latter are thin regions which might behave as high or low permeability channels depending on their physical parameters, and are thus of paramount importance in underground flow problems. Chemical reactions may alter the local properties of the porous media as well as the fracture walls, changing the flow path and possibly occluding some portions of the fractures or zones in the porous media. To solve numerically the coupled problem we propose a temporal splitting scheme so that the equations describing each physical process are solved sequentially. Numerical tests show the accuracy of the proposed model and the ability to capture complex phenomena, where one or multiple fractures are present.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.