Abstract
The mathematical model is developed for a virtual training system (simulator) of the power unit electrical part operators of a thermal (nuclear) power plant. The model is used to simulating the main operating conditions of the power unit electrical part: generator idling, generator synchronization with the power system, excitation shifting from the main unit to the backup one and vice versa, switching in the power unit auxiliary system, and others. Furthermore, it has been implemented modelling some probable emergency conditions within a power plant: incomplete phase switching, damage to standard power unit equipment, synchronous oscillations, asynchronous mode, etc. The model of the power unit electrical part consists of two interacting software units: models of power equipment (turbine, generator with excitation systems, auxiliary system) and models of its control systems, automation, relay protection and signalling. The models are represented by the corresponding algebraic-differential equations that provide real-time mapping power unit processes at the operator’s request. The developed model uses optimal solving algebraic-differential equations to ensure the virtual process behaviour in real-time. In particular, the implicit Euler method is used to solve differential equations, which is stable when simulating processes in significant disturbances, such as accidental disconnection of the unit from the power system, tripping and energizing loads, generator excitation loss, etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.