Abstract

Coastal and estuarine intertidal sediments are commonly colonized by dense populations of microphytobenthos. Due to wind and tides, important fractions of microphytobenthic populations may be buried. A mathematical model describing the depth variation of chlorophyll a in intertidal sediments was developed and experimentally tested. The model assumed first-order chlorophylla degradation and a constant mean burial velocity which resulted in a negative exponential variationCZ=COexp{-k/vz} (CZ andCO=chlorophylla concentration at depth zand at the surface;k=specific degradation rate of chlorophyll a to pheopigments;V=mean burial velocity). Chlorophylla concentration depth profiles in different sediment types measured at the Tagus estuary and Ria Formosa (Portugal) were used to validate the model. The model was adjusted to field data. The chlorophyll a degradation rate was measured in a microcosm experiment under total darkness and no tidal action, and sampled during three months. This rate was shown to be independent of time and depth for the upper 0–15 mm depth interval. This result allowed the estimation ofV for each sampling site. Comparison of predicted and observed temporal data further confirmed the validity of the model andk andV values. Despite its simplicity, the proposed model adequately described the depth distribution of chlorophylla in different types of intertidal sediments. The model allowed the quantitative characterization of the buried microphytobenthic biomass (depth-integrated biomass) and the assessment of its importance as potentially productive stock of cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.