Abstract

An unsteady-state, one-dimensional model which simulates the solution mining of a rubblized copper ore body deeply buried below the water table has been developed. Leaching is accomplished by pumping water saturated with oxygen into the bottom of the flooded rubble chimney. The physical processes incorporated in the present model include the axial convective transport of mass and heat, axial dispersion of mass, mass transfer between the bulk fluid and solid surface, and pore diffusion within the ore fragments. The solution withdrawn from the top of the chimney is recycled through the bottom of the chimney, and the temperature of the chimney is allowed to build up by means of the heat generated during leaching. The coupled model equations are solved numerically by an implicit finite-difference method. Model calculations for the leaching process are made for two different modes of operation: (1) constant flow-rate and (2) variable flow-rate of the leach solution during leaching. The calculated results from both modes of operation indicate that thefractional recovery of copper increases with decreasing ore particle size, ore grade, pyrite/chalcopyrite molar ratio, and shape factor. Copper recovery is rather insensitive to the chimney porosity under typical operating conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.