Abstract
This study introduces a mathematical model to predict the dynamic angle of repose exhibited by granular materials in a rotating drum. The model accounts for the effect of particle properties, particularly sliding and rolling friction, as well as process conditions, i.e., the Froude number. We show that the effects of particle properties can be modeled independently of the process conditions, resulting in a multiplicative model. The model is validated using experimental data taken at different Froude numbers, yielding favorable agreement between the predicted dynamic angle of repose and the experimental observations. The findings of this study hold significant implications for engineering disciplines, as they provide crucial insights for optimizing processes involving granular materials in various engineering applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.