Abstract

Cross-docking refers to the practices of unloading materials from inbound vehicles and then loading them directly into outbound ones. Removing or minimizing warehousing costs, space requirements, as well as inventory utilization, cross-docking simplifies supply chains and makes them deliver goods to markets in a faster and more efficient manner. Accordingly, a mixed-integer linear programming ($MILP $) model is developed in the present study to schedule transportation routing and cross-docking in a reverse logistics network ($RLN$). Furthermore, different traffic modes are also considered to reduce fuel consumption, which reduces emissions and pollution. The proposed model is a multi-product, multi-stage, and non-deterministic polynomial-time that is an NP-hard problem. We use the non-dominated sorting genetic algorithm II ($NSGA-II$) to solve the model. A numerical example has been solved to illustrate the efficiency of the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.