Abstract

In order to explore the kinetic characteristics of planktonic microorganisms and nanometer biological motors, a mathematical model is developed to estimate the hydrodynamic force in the migration of micro- and nano-swimmers by using the Laplace transformation and linear superposition. Based on the model, it is found that a micro- and nano-swimmer will enjoy a positive propulsive force by improving frequencies or generating traveling waves along its body if it is not time reversible. The results obtained in this study provide a physical insight into the behaviors of the micro- and nano-swimmer at low Reynolds numbers, and the corresponding quantitative basis can also be potentially used in the design of nanorobot and nanosized biomaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call