Abstract

Lassa Fever, caused by Lassa virus, is a vector-host transmitted infectious disease whose prevalence has been on the upsurge over the past few decades. Thus, considering the grave implications of the continuous spread of the disease, an epidemic model was developed to describe the disease transmission dynamics with impacts of proposed control measures. This is to help inform effective control strategies that would successfully curtail and contain the disease in its endemic areas. The model is qualitatively analyzed in order to contextualize the long run behavior of the model while the model associated basic reproduction number $(\mathcal{R}_0)$ is derived. The model analysis reveals that the disease-free equilibrium is locally and globally stable whenever $ \mathcal{R}_0 < 1 $ and the disease prevalence would be high as long as $ \mathcal{R}_0 > 1 $. Finally, the model is numerically solved and simulated for different scenarios of the disease outbreaks while the findings from simulations are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call