Abstract
Unlike conventional mobile ad hoc networks, tactical networks, which provide communication of software-defined radios (SDRs) in mission critical and time-sensitive applications, require cognitive functions across the TCP/IP stack to encounter strict constraints while providing smooth incorporation with IP-based applications. The tactical applications are mission-critical and thus pose unique requirements for the network, including decentralized control and mission specific latency bounds for end-to-end data delivery. This paper presents a mathematical model for a cross-layer design, which optimizes trade-offs among different configurations of the SDRs to achieve maximum performance in terms of energy efficiency, reliable packet delivery at an appropriate data rate and within affordable latency bounds in multi-hop tactical networks. The proposed model is used in a number of mission-critical network scenarios to demonstrate enhanced performance, where SDRs effectively adapt to the dynamic environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IEEE Access
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.