Abstract

In this paper, a non-linear mathematical model is proposed and analyzed to study the phenomenon of a chemical defense mechanism involving two competing species, where each species produces a toxicant affecting the other. It is shown that if the emission rate coefficient of toxicant, produced by one species increases, the equilibrium density of the other species decreases and its magnitude is lower than its original carrying capacity. It is found that the usual principle of competitive exclusion (coexistence) in the absence of toxicant may change in the case under consideration. It is also observed that increases in the values of production rates of toxicants by the competing species and depletion rates of environmental toxicants due to its assimilation by the species has a destabilizing effect, and decrease in the washout rates of environmental toxicants has a destabilizing effect on the dynamics of the system. In the case of allelopathy, where only one species produces a toxicant affecting the other species, it is shown that the affected species is driven to extinction for large production rate of this toxicant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.