Abstract
A mathematical model is described for calculating the volume-conducted magnetic field from active muscle fibers in an anisotropic bundle. With earlier models, the azimuthal magnetic field of a nerve bundle was calculated and the results were compared with the fields measured by toroidal pickup coils. The present model is capable of evaluating all three of the magnetic field components and is thus applicable for analyzing SQUID magnetometer recordings of fields from a muscle bundle. The component of the magnetic field parallel to the fiber axis is more than an order of magnitude smaller than either of the other two components. The amplitude of the magnetic signal is strongly dependent upon the anisotropy of the muscle bundle, the intracellular conductivity, the radius of the muscle fiber, the radius of the muscle bundle, and the location of the fiber in the muscle bundle. The peak-to-peak amplitude of the single-muscle-fiber action field increases linearly with increasing intracellular conductivity, as the square of the radius of the muscle fiber, and exponentially with the distance between the location of the fiber and the center of the bundle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.