Abstract

Plant shoot gravitropism is a complex phenomenon resulting from gravity sensing, curvature sensing (proprioception), the ability to uphold self-weight and growth. Although recent data analysis and modelling have revealed the detailed morphology of shoot bending, the relative contribution of bending force (derived from the gravi-proprioceptive response) and stretching force (derived from shoot axial growth) behind gravitropism remains poorly understood. To address this gap, we combined morphological data with a theoretical model to analyze shoot bending in wild-type and lazy1-like 1 mutant Arabidopsis thaliana. Using data from actual bending events, we searched for model parameters that minimized discrepancies between the data and mathematical model. The resulting model suggests that both the bending force and the stretching force differ significantly between the wild type and mutant. We discuss the implications of the mechanical forces associated with differential cell growth and present a plausible mechanical explanation of shoot gravitropism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.