Abstract

Liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) has become the most versatile analytical tool for profiling small-molecule compounds and increasingly been applied in many fields. Nevertheless, LC-MS based quantification still face some challenges, such as signal drift in LC-MS, which may affect the validity of the obtained data and lead to misinterpretation of biological results. Here, we established a calibration method known as “RIM” to compensate the signal drift of LC-MS. To this end, a mixture of d4-2-dimethylaminoethylamine (d4-DMED)-coded normal fatty acids (C5–C23) was used as calibrants to construct RIM calibration. With the addition of calibrants, not only the MS signal drift, but also the mass accuracy and LC retention time can be calibrated, thereby improving the reliability of quantitative data. The effectiveness of RIM was carefully validated using a human serum extract spiked with 34 standards and then RIM was applied for rat brain untargeted metabolome research. In addition, to expand the functionality and flexibility of RIM for data handling, we generated a MATLAB-based RIM program, which implements the above concepts and allows automatic data process. Taken together, the proposed RIM method has potential application in large-scale quantitative study of complex samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.