Abstract

Kleeman has recently demonstrated that the relative entropy provides a significant measure of the information content of a prediction ensemble compared with the climate record in several simplified climate models. Here several additional aspects of utilizing the relative entropy for predictability theory are developed with full mathematical rigor in a systematic fashion which the authors believe will be very useful in practical problems with many degrees of freedom in atmosphere/ocean and biological science. The results developed here include a generalized signal-dispersion decomposition, rigorous explicit lower bound estimators for information content, and rigorous lower bound estimates on relative entropy for many variables, N, through N, one-dimensional relative entropies and N, two-dimensional mutual information functions. These last results provide a practical context for rapid evaluation of the predictive information content in a large number of variables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.