Abstract
An inverse elastic source problem with sparse measurements is our concern. A generic mathematical framework is proposed which extends a low-dimensional manifold regularization in the conventional source reconstruction algorithms thereby enhancing their performance with sparse data-sets. It is rigorously established that the proposed framework is equivalent to the so-called deep convolutional framelet expansion in machine learning literature for inverse problems. Apposite numerical examples are furnished to substantiate the efficacy of the proposed framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.