Abstract

Operational planning of prosumer microgrids with solar and wind energy sources is quite a complex task considering the intermittency of these sources and energy import/export from prosumers. Reserve capacities which can be reliably provided by dispatchable sources like conventional generators (CGs) may be needed to ensure reliability of the grid. However, these sources produce emissions which have adverse effects on the environment. Hence, emission curtailment should be incorporated in the operational planning of microgrids with these generators. In this paper, a mathematical formulation for the joint economic and emission dispatch of a renewable energy-assisted prosumer microgrid is presented and solved using the CPLEX Solver in Advanced Interactive Multidimensional Modelling System (AIMMS). A modified microgrid test system is used as a case study in this work. Results show that incorporating an emission function in the objective of the operational dispatch formulation not only reduces emissions, but could be of advantage to customers as larger capacities of their behind-the-meter resources get the chance to provide grid ancillary services; however, it also puts a restriction on the profit that could be made from selling energy to the main grid during periods when energy prices are high.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.