Abstract

<div class="section abstract"><div class="htmlview paragraph">Blending of primary alcohol in gasoline surges the vapour pressure significantly and exhibits azeotrope behaviour that effect severely on the atmospheric distillation yields. In this experiment, primary alcohol (Ethanol) were blended in varied volumetric proportion (5%, 10%, 15%, 20%, 25%) with hydrocracked gasoline, influence on volatility behaviour and distillation properties were investigated. Physical properties of this blends were investigated for vapour pressure (VP), VLI, DI and distillation which were selected to evaluate the influence of alcohol in azeotrope behaviour of the fuel mix reflected through pattern of distillation curve (temperature vs % recovery range). This fuel mix exhibited rise in recovery at 70<sup>0</sup>C (E70), VP, VLI and area of azeotrope with increase in % of alcohol volume in gasoline blend. A linear equation is established from the distillation data to predict the impact of % ethanol on % volume recovery and maximum temperature drop in distillation test of gasoline-ethanol fuel blends. Addition of non-ionic surfactant in ethanol blended gasoline (E20) reduces the azeotrope behaviour significantly and flattens the distillation curve. E70, vapour lock index (VLI), driveability index (DI) and area of azeotrope reduces proportionately with the increment of surfactant dosage (%) in E20. This provides a useful information for designing a suitable ethanol blended gasoline fuel, dedicated to spark ignition engine for all weather conditions.</div></div>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call