Abstract
Recent developments in the inclusive fitness theory have revealed that the direction of evolution can be analytically predicted in a wider class of models than previously thought, such as those models dealing with network structure. This paper aims to provide a mathematical description of the inclusive fitness theory. Specifically, we provide a general framework based on a Markov chain that can implement basic models of inclusive fitness. Our framework is based on the probability distribution of “offspring-to-parent map”, from which the key concepts of the theory, such as fitness function, relatedness and inclusive fitness, are derived in a straightforward manner. We prove theorems showing that inclusive fitness always provides a correct prediction on which of two competing genes more frequently appears in the long run in the Markov chain. As an application of the theorems, we prove a general formula of the optimal dispersal rate in the Wright’s island model with recurrent mutations. We also show the existence of the critical mutation rate, which does not depend on the number of islands and below which a positive dispersal rate evolves. Our framework can also be applied to lattice or network structured populations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.