Abstract

Bone remodeling is a highly complex process, in which bone cells interact and regulate bone's apparent density as a response to several external and internal stimuli. In this work, this process is numerically described using a novel 2D biomechanical model. Some of the new features in this model are (i) the mathematical parameters used to determine bone's apparent density and cellular density; (ii) an automatic boundary recognition step to spatially control bone remodeling and (iii) an approach to mimic the mechanical transduction to osteoclasts and osteoblasts. Moreover, this model is combined with a meshless approach – the Radial Point Interpolation Method (RPIM). The use of RPIM is an asset for this application, especially in the construction of the boundary maps. This work studies bone's adaptation to a certain loading regime through bone resorption. The signaling pathways of bone cells are dependent on the level of strain energy density (SED) in bone. So, when SED changes, bone cells' functioning is affected, causing also changes on bone's apparent density. With this model, bone is able to achieve an equilibrium state, optimizing its structure to withstand the applied loads. Results suggest that this model has the potential to provide high quality solutions while being a simpler alternative to more complex bone remodeling models in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.