Abstract

Influences from the mother on offspring phenotype, known as maternal effects, are an important cause of adaptive phenotypic plasticity [1, 2]. Eusocial insects show dramatic phenotypic plasticity with morphologically distinct reproductive (queen) and worker castes [3, 4]. The dominant paradigm for honeybees (Apis mellifera) is that castes are environmentally rather than genetically determined, with the environment and diet of young larvae causing caste differentiation [5-9]. A role for maternal effects has not been considered, but here we show that egg size also influences queen development. Queens laid significantly bigger eggs in the larger queen cells than in the worker cells. Eggs laid in queen cells (QE), laid in worker cells (WE), and 2-day old larvae from worker cells (2L) were transferred to artificial queen cells to be reared as queens in a standardized environment. Newly emerged adult queens from QE were heavier than those from the other two groups and had more ovarioles, indicating a consequence of egg size for adult queen morphology. Gene expression analyses identified several significantly differentially expressed genes between newly emerged queens from QE and those from the other groups. These included a disproportionate number of genes involved in hormonal signaling, body development, and immune pathways, which are key traits differing between queens and workers. That egg size influences emerging queen morphology and physiology and that queens lay larger eggs in queen cells demonstrate both a maternal effect on the expression of the queen phenotype and a more active role for the queen in gyne production than has been realized previously.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call