Abstract

AbstractIt is an ongoing challenge to design and synthesize magnetic materials that undergo colossal thermal expansion and that possess potential applications as microscale or nanoscale actuators with magnetic functionality. A paramagnetic metallocyanate building block was used to construct a cyanide‐bridged Fe‐Co complex featuring both positive and negative colossal volumetric thermal‐expansion behavior. A detailed study revealed that metal‐to‐metal charge transfer between 180 and 240 K induced a volumetric thermal expansion coefficient of 1498 MK−1 accompanied with hysteretic spin transition. Rotation of the magnetic building blocks induced change of π⋅⋅⋅π interactions, resulting in a negative volume expansion coefficient of −489 MK−1, and another hysteretic magnetic transition between 300 and 350 K. This work presents a strategy for incorporating both colossal positive and negative volumetric thermal expansion with shape and magnetic memory effects in a material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.